top of page

Our Publications

Preprints:

  • Lamraoui, F., Krämer, M., Afchine, A., Sokol, A. B., Khaykin, S., Pandey, A., and Kuang, Z.: Sensitivity of convectively driven tropical tropopause cirrus to ice habit, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-670, in review, 2022.

  • Rachel Atlas, Christopher Bretherton, Adam Sokol, Peter Blossey and Marat Khairoutdinov.  What are the causes of tropical cirrus longwave biases in global storm-resolving simulations?  Preprint at ESSOAR: https://doi.org/10.1002/essoar.10511104.1

  • Atlas, R. and Bretherton, C.: Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on cirrus and comparison with global-storm resolving models, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-491, in review, 2022.

  • Pandey, A., F. Lamraoui, J. B. Smith, C. P. Clapp, D. S. Sayres and Z. Kuang (2022). Sensitivity of deep convection and cross-tropopause water vapor transport to microphysical parameterizations. Submitted.

​

2022:

  • Hartmann, D. L. , Q. Fu, P. N. Blossey, B. D. Dygert, A. B. Sokol (2022).  The Vertical Profile of Radiative Cooling and Lapse Rate in a Warming Climate.  J. Climate, 35(19), 2653-2665. https://doi.org/10.1175/JCLI-D-21-0861.1.

  • Singer, C. E., Clouser, B. W., Khaykin, S. M., Krämer, M., Cairo, F., Peter, T., Lykov, A., Rolf, C., Spelten, N., Afchine, A., Brunamonti, S., and Moyer, E. J. (2022).  Intercomparison of upper tropospheric and lower stratospheric water vapor measurements over the Asian Summer Monsoon during the StratoClim campaign, Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022

  • de Vries, A. J., Aemisegger, F., Pfahl, S., and Wernli, H. (2022).  Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model, Atmos. Chem. Phys., 22, 8863–8895, https://doi.org/10.5194/acp-22-8863-2022

  • Khairoutdinov, M., C. S. Bretherton and P. N. Blossey (2022).  Global System for Atmospheric Modeling: Model Description and Preliminary Results.  J. Adv. Model. Earth Sys., 14, e2021MS002968. https://doi.org/10.1029/2021MS002968

  • Khaykin, S. M., Moyer, E., Krämer, M., Clouser, B., Bucci, S., Legras, B., Lykov, A., Afchine, A., Cairo, F., Formanyuk, I., Mitev, V., Matthey, R., Rolf, C., Singer, C. E., Spelten, N., Volkov, V., Yushkov, V., and Stroh, F. (2022). Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone, Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022

  • Atlas, R., C. S. Bretherton, M. Khairoutdinov, P. N. Blossey (2022).  Hallett-Mossop rime splintering dims the Southern Ocean: New insight from global cloud-resolving simulations. AGU Advances, 3, e2021AV000454. https://doi.org/10.1029/2021AV000454. See also the Viewpoint article about this study in AGU Advances.

  • Baumgartner, M., Rolf, C., Grooß, J.-U., Schneider, J., Schorr, T., Möhler, O., Spichtinger, P., and Krämer, M. (2022).  New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations, Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022

​

2021:

  • Gasparini, B., Sokol, A. B., Wall, C. J., Hartmann, D. L., and Blossey, P. N. (2021).  Diurnal differences in tropical maritime anvil cloud evolution.  Journal of Climate, 35(5), 1655-1677. https://doi.org/10.1175/JCLI-D-21-0211.1

  • Nugent, J. M., Turbeville, S. M., Bretherton, C. S., Blossey, P. N., & Ackerman, T. P. (2021). Tropical Cirrus in Global Storm-Resolving Models. Part I: Role of Deep Convection. Earth and Space Science, 8, e2021EA001965. https://doi.org/10.1029/2021EA001965

  • Turbeville, S. M., Nugent, J. M., Ackerman, T. P., Bretherton, C. S., & Blossey, P. N. (2021). Tropical Cirrus in Global Storm-Resolving Models. Part II: Cirrus Life Cycle and Top-of-Atmosphere Radiative Fluxes. Earth and Space Science, 8, e2021EA001978. https://doi.org/10.1029/2021EA001978

  • Bolot, M., & Fueglistaler, S. (2021). Tropical water fluxes dominated by deep convection up to near tropopause levels. Geophysical Research Letters, 48, e2020GL091471. https://doi.org/10.1029/2020GL091471. Featured as a Research Highlight in EOS.

  • Hu, Z., Lamraoui, F., and Kuang, Z. (2021). Influence of Upper-Troposphere Stratification and Cloud-Radiation Interaction on Convective Overshoots in the Tropical Tropopause Layer. Journal of the Atmospheric Sciences,  https://doi.org/10.1175/JAS-D-20-0241.1

  • Sullivan, S.C., Voigt, A., 2021. Ice microphysical processes exert a strong control on the simulated radiative energy budget in the tropics. Commun Earth Environ 2, 137. https://doi.org/10.1038/s43247-021-00206-7

  • Bacer, S., Sullivan, S. C., Sourdeval, O., Tost, H., Lelieveld, J., and Pozzer, A., 2021. Cold cloud microphysical process rates in a global chemistry–climate model, Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021

  • Ceppi, P., & Fueglistaler, S., 2021. The El Niño–Southern Oscillation pattern effect. Geophys. Res. Lett., 48, e2021GL095261. https://doi.org/10.1029/2021GL095261

  • Fueglistaler, S., & Silvers, L.G., 2021. The peculiar trajectory of global warming. J. Geophys. Res., 126, e2020JD033629. https://doi.org/10.1029/2020JD033629

​

2020:

  • Sarkozy, L. C., Clouser, B. W., Lamb, K. D., Stutz, E. J., Saathoff, H., Möhler, O., Ebert, V.,  and Moyer, E. J. , 2020: The Chicago Water Isotope Spectrometer (ChiWIS-lab): A tunable diode laser spectrometer for chamber-based measurements of water vapor isotopic evolution during cirrus formation.  Review of Scientific Instruments 91, 045120 (2020); https://doi.org/10.1063/1.5139244  Featured as an AIP Scilight.

  • Clouser, B. W., Lamb, K. D., Sarkozy, L. C., Habig, J., Ebert, V., Saathoff, H., Möhler, O., and Moyer, E. J., 2020: No anomalous supersaturation in ultracold cirrus laboratory experiments, Atmos. Chem. Phys., 20, 1089–1103, https://doi.org/10.5194/acp-20-1089-2020

  • Bolot, M. and S. Fueglistaler, 2020: Reduction of bias from parameter variance in geophysical data estimation: method and application to ice water content and sedimentation flux estimated from lidar. J. Atmos. Sci., https://doi.org/10.1175/JAS-D-19-0106.1

  • Zhang, Y., & Fueglistaler, S. ( 2020). How tropical convection couples high moist static energy over land and ocean. Geophysical Research Letters, 47. https://doi.org/10.1029/2019GL086387​

  • Zhang, Y., Jeevanjee, N., & Fueglistaler, S. (2020). Linearity of outgoing longwave radiation: From an atmospheric column to global climate models. Geophysical Research Letters, 47, e2020GL089235. https://doi.org/10.1029/2020GL089235

  • Duan, S. Q., Findell, K. L., & Wright, J. S. (2020). Three regimes of temperature distribution change over dry land, moist land, and oceanic surfaces. Geophysical Research Letters, 47, e2020GL090997. https://doi.org/10.1029/2020GL090997

 

2019:

  • Y., Zhang, & Fueglistaler, S. ( 2019). Mechanism for increasing tropical rainfall unevenness with global warming. Geophysical Research Letters, 46, 14836– 14843. https://doi.org/10.1029/2019GL086058

  • Dinh, T., & Fueglistaler, S. (2019). On the causal relationship between the moist diabatic circulation and cloud rapid adjustment to increasing CO2.  Journal of Advances in Modeling EarthSystems, 11, https://doi.org/10.1029/2019MS001853

 

2018:

  • Blossey, P. N., Bretherton, C. S., Thornton, J. A., & Virts, K. S., 2018: Locally enhanced aerosols over a shipping lane produce convective invigoration but weak overall indirect effects in cloud-resolving simulations. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL078682

  • Benjamin W. Clouser, Laszlo Sarkozy, and Elisabeth J. Moyer, 2018: Improved light collection in OA-ICOS cells using non-axially-symmetric optics, Appl. Opt. 57, 6252-6259, https://doi.org/10.1364/AO.57.006252

bottom of page