2020: Tuesday, at 8am Pacific Time
Jan 14: Talk about what interesting things people learned at the AGU, mainly focusing on cirrus- and TTL-related topics.
Jan 28: Zeyuan Hu (grad student at Harvard) and Blaž Gasparini (postdoc at UW) will give short presentations about ongoing research.
Feb 4: Fayçal Lamraoui presents some results from his work simulating parts of the Stratoclim field campaign in WRF. Fayçal is a postdoc with Zhiming Kuang at Harvard.
2019: Tuesday, at 8am Pacific Time
Feb 21: Lilly, D. K., 1988: Cirrus outflow dynamics. J. Atmos. Sci., 45, 1594–1605. https://doi.org/10.1175/1520-0469(1988)045<1594:COD>2.0.CO;2Ackerman, T.P., K. Liou, F.P. Valero, and L. Pfister, 1988: Heating Rates in Tropical Anvils. J. Atmos. Sci., 45, 1606–1623, https://doi.org/10.1175/1520-0469(1988)045<1606:HRITA>2.0.CO;2
Mar 7: Dinh, T. P., D. R. Durran, and T. P. Ackerman (2010), Maintenance of tropical tropopause layer cirrus, J. Geophys. Res., 115, D02104, doi:10.1029/2009JD012735.
Mar 21: Jensen et al, 2016: On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance. J. Atmos. Sci., 73, 2445–2464, https://doi.org/10.1175/JAS-D-15-0274.1
Apr 4: Jensen et al, 2017: The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific. Bull. Amer. Meteor. Soc., 98, 129–143, https://doi.org/10.1175/BAMS-D-14-00263.1
Apr 18: Kuang, Z. and C.S. Bretherton, 2004: Convective Influence on the Heat Balance of the Tropical Tropopause Layer: A Cloud-Resolving Model Study. J. Atmos. Sci., 61,2919–2927, https://doi.org/10.1175/JAS-3306.1
May 2: Kuang, Z. and D.L. Hartmann, 2007: Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model. J. Climate, 20, 2051–2057,https://doi.org/10.1175/JCLI4124.1
May 16: Seeley, J. T., Jeevanjee, N., & Romps, D. M. ( 2019). FAT or FiTT: Are anvil clouds or the tropopause temperature invariant? Geophysical Research Letters, 46, 1842– 1850. https://doi.org/10.1029/2018GL080096
May 30: Clouser, B. W., Lamb, K. D., Sarkozy, L., Nisenoff, A., Habig, J., Ebert, V., Saathoff, H., Möhler, O., and Moyer, E. J.: No anomalous supersaturation in ultracold cirrus laboratory experiments, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-150, in review, 2019.
Oct 15: Hartmann et al (2018). The life cycle and net radiative effect of tropical anvil clouds. Journal of Advances in Modeling Earth Systems, 10, 3012– 3029. https://doi.org/10.1029/2018MS001484
Oct 29: Wall, C.J., D.L. Hartmann, M.M. Thieman, W.L. Smith, and P. Minnis, 2018: The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific. J. Climate, 31, 10059–10080, https://doi.org/10.1175/JCLI-D-18-0154.1
Nov 12: Berry, E., and Mace, G. G. ( 2014), Cloud properties and radiative effects of the Asian summer monsoon derived from A‐Train data, J. Geophys. Res. Atmos., 119, 9492– 9508, doi:10.1002/2014JD021458.
Nov 26: Krämer et al: A microphysics guide to cirrus clouds – Part 1: Cirrus types, Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, 2016.
Prospective Discussion Papers:
TTL
Podglajen, A., T.P. Bui, J.M. Dean-Day, L. Pfister, E.J. Jensen, M.J. Alexander, A. Hertzog, B. Kärcher, R. Plougonven, and W.J. Randel, 2017: Small-Scale Wind Fluctuations in the Tropical Tropopause Layer from Aircraft Measurements: Occurrence, Nature, and Impact on Vertical Mixing. J. Atmos. Sci., 74, 3847–3869, https://doi.org/10.1175/JAS-D-17-0010.1
Fueglistaler, S., et al., 2009: "Tropical tropopause layer." Reviews of Geophysics 47. https://doi.org/10.1029/2008RG000267Cirisan et al, Atmospheric Chemistry and Physics ,2014,Vol.14(14),p.7341-7365
Schoeberl, M. R., Jensen, E. J., Pfister, L., Ueyama, R., Wang, T., Selkirk, H., et al ( 2019). Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer. Journal of Geophysical Research: Atmospheres,124. https://doi.org/10.1029/2018JD029849
Podglajen, A. et al ( 2016), Lagrangian temperature and vertical velocity fluctuations due to gravity waves in the lower stratosphere, Geophys. Res. Lett., 43, 3543– 3553, doi:10.1002/2016GL068148.
Kim, J., Randel, W. J., & Birner, T. ( 2018). Convectively driven tropopause‐level cooling and its influences on stratospheric moisture. Journal of Geophysical Research: Atmospheres, 123, 590– 606. https://doi.org/10.1002/2017JD027080
factors influencing humidity in TTL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2014GL061289
rad impacts of cloud in TTL https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD012393https://doi.org/10.1029/2003JD004022
Microphysics:
Jensen, E. J., et al. ( 2016), High‐frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629– 6635, doi:10.1002/2016GL069426.
Spichtinger, P. and Krämer, M.: Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers, Atmos. Chem. Phys., 13, 9801-9818, https://doi.org/10.5194/acp-13-9801-2013, 2013.
Dinh, T., Podglajen, A., Hertzog, A., Legras, B., and Plougonven, R.: Effect of gravity wave temperature fluctuations on homogeneous ice nucleation in the tropical tropopause layer, Atmos. Chem. Phys., 16, 35-46, https://doi.org/10.5194/acp-16-35-2016, 2016.
Kärcher, B., A. Dörnbrack, and I. Sölch, 2014: Supersaturation Variability and Cirrus Ice Crystal Size Distributions. J. Atmos. Sci., 71, 2905–2926, https://doi.org/10.1175/JAS-D-13-0404.1
Spichtinger et al. 2010: "Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds", JGR. https://doi.org/10.1029/2009JD012168
Convection:
Mace, G.G., M. Deng, B. Soden, and E. Zipser, 2006: Association of Tropical Cirrus in the 10–15-km Layer with Deep Convective Sources: An Observational Study Combining Millimeter Radar Data and Satellite-Derived Trajectories. J. Atmos. Sci., 63, 480–503, https://doi.org/10.1175/JAS3627.1
Convective Influence on Humidity and Clouds in TTL during Boreal Summer: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JD028674
Comments